1,003 research outputs found

    Direct Instantons and Nucleon Magnetic Moments

    Get PDF
    We calculate the leading direct-instanton contributions to the operator product expansion of the nucleon correlator in a magnetic background field and set up improved QCD sum rules for the nucleon magnetic moments. Remarkably, the instanton contributions are found to affect only those sum rules which had previously been considered unstable. The new sum rules show good stability and reproduce the experimental values of the nucleon magnetic moments with values of χ\chi, the quark condensate magnetic susceptibility, consistent with other estimates.Comment: 15 pages, 2 figure

    Resonances in radiative hyperon decays

    Get PDF
    The importance of resonances for the radiative hyperon decays is examined in the framework of chiral perturbation theory. Low lying baryon resonances are included into the effective theory and tree contributions to these decays are calculated. We find significant contributions to both the parity-conserving and parity-violating decay amplitudes and a large negative value for the asymmetry parameter in polarized Sigma^+ -> p gamma is found, in agreement with the experimental result alpha(p Sigma^+) = -0.76 +/- 0.08.Comment: 14 pages, 2 figure

    Quantum corrections to the entropy of charged rotating black holes

    Full text link
    Hawking radiation from a black hole can be viewed as quantum tunneling of particles through the event horizon. Using this approach we provide a general framework for studying corrections to the entropy of black holes beyond semiclassical approximations. Applying the properties of exact differentials for three variables to the first law thermodynamics, we study charged rotating black holes and explicitly work out the corrections to entropy and horizon area for the Kerr-Newman and charged rotating BTZ black holes. It is shown that the results for other geometries like the Schwarzschild, Reissner-Nordstr\"{o}m and anti-de Sitter Schwarzschild spacetimes follow easily

    Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon

    Full text link
    Considering gravitational and gauge anomalies at the horizon, a new method that to derive Hawking radiations from black holes has been developed by Wilczek et al. In this paper, we apply this method to non-rotating and rotating Kaluza-Klein black holes with squashed horizon, respectively. For the rotating case, we found that, after the dimensional reduction, an effective U(1) gauge field is generated by an angular isometry. The results show that the gauge current and energy-momentum tensor fluxes are exactly equivalent to Hawking radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.

    Role of surface roughness in hard x-ray emission from femtosecond laser produced copper plasmas

    Get PDF
    The hard x-ray emission in the energy range of 30-300 keV from copper plasmas produced by 100 fs, 806 nm laser pulses at intensities in the range of 10151016^{15}-10^{16} W cm2^{-2} is investigated. We demonstrate that surface roughness of the targets overrides the role of polarization state in the coupling of light to the plasma. We further show that surface roughness has a significant role in enhancing the x-ray emission in the above mentioned energy range.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    Point symmetries in the Hartree-Fock approach: Symmetry-breaking schemes

    Full text link
    We analyze breaking of symmetries that belong to the double point group D2h(TD) (three mutually perpendicular symmetry axes of the second order, inversion, and time reversal). Subgroup structure of the D2h(TD) group indicates that there can be as much as 28 physically different, broken-symmetry mean-field schemes --- starting with solutions obeying all the symmetries of the D2h(TD) group, through 26 generic schemes in which only a non-trivial subgroup of D2h(TD) is conserved, down to solutions that break all of the D2h(TD) symmetries. Choices of single-particle bases and the corresponding structures of single-particle hermitian operators are discussed for several subgroups of D2h(TD).Comment: 10 RevTeX pages, companion paper in nucl-th/991207

    Aspects of meson properties in dense nuclear matter

    Get PDF
    We investigate the modification of meson spectral densities in dense nuclear matter at zero temperature. These effects are studied in a fully relativistic mean field model which goes beyond the linear density approximation and also includes baryon resonances. In particular, the role of N*(1520) and N*(1720) on the rho meson spectral density is highlighted. Even though the nucleon-nucleon loop and the nucleon-resonance loop contribute with the opposite sign, an overall reduction of rho meson mass is still observed at high density. Importantly, it is shown that the resonances cause substantial broadening of the rho meson spectral density in matter and also induces non-trivial momentum dependence. The spectral density of the a0 meson is also shown. We study the dispersion relations and collective oscillations induced by the rho meson propagation in nuclear matter together with the influence of the mixing of rho with the a0 meson. The relevant expression for the plasma frequency is also recovered analytically in the appropriate limit.Comment: 19 pages, 17 figure

    The large-N(c) nuclear potential puzzle

    Full text link
    An analysis of the baryon-baryon potential from the point of view of large-N(c) QCD is performed. A comparison is made between the N(c)-scaling behavior directly obtained from an analysis at the quark-gluon level to the N(c)-scaling of the potential for a generic hadronic field theory in which it arises via meson exchanges and for which the parameters of the theory are given by their canonical large-N(c) scaling behavior. The purpose of this comparison is to use large-N(c) consistency to test the widespread view that the interaction between nuclei arises from QCD through the exchange of mesons. Although at the one- and two-meson exchange level the scaling rules for the potential derived from the hadronic theory matches the quark-gluon level prediction, at the three- and higher-meson exchange level a generic hadronic theory yields a potential which scales with N(c) faster than that of the quark-gluon theory.Comment: 17 pages, LaTeX, 5 figure

    Nucleon-Nucleon Scattering under Spin-Isospin Reversal in Large-N_c QCD

    Full text link
    The spin-flavor structure of certain nucleon-nucleon scattering observables derived from the large N_c limit of QCD in the kinematical regime where time-dependent mean-field theory is valid is discussed. In previous work, this regime was taken to be where the external momentum was of order N_c which precluded the study of differential cross sections in elastic scattering. Here it is shown that the regime extends down to order N_c^{1/2} which includes the higher end of the elastic regime. The prediction is that in the large N_c limit, observables describable via mean-field theory are unchanged when the spin and isospin of either nucleon are both flipped. This prediction is tested for proton-proton and neutron-proton elastic scattering data and found to fail badly. We argue that this failure can be traced to a lack of a clear separation of scales between momentum of order N_c^{1/2} and N_c^1 when N_c is as small as three. The situation is compounded by an anomalously low particle production threshold due to approximate chiral symmetry.Comment: 5 pages, 1 figur

    G\"{o}del black hole, closed timelike horizon, and the study of particle emissions

    Full text link
    We show that a particle, with positive orbital angular momentum, following an outgoing null/timelike geodesic, shall never reach the closed timelike horizon (CTH) present in the (4+1)(4+1)-dimensional rotating G\"{o}del black hole space-time. Therefore a large part of this space-time remains inaccessible to a large class of geodesic observers, depending on the conserved quantities associated with them. We discuss how this fact and the existence of the closed timelike curves present in the asymptotic region make the quantum field theoretic study of the Hawking radiation, where the asymptotic observer states are a pre-requisite, unclear. However, the semiclassical approach provides an alternative to verify the Smarr formula derived recently for the rotating G\"{o}del black hole. We present a systematic analysis of particle emissions, specifically for scalars, charged Dirac spinors and vectors, from this black hole via the semiclassical complex path method.Comment: 13 pages; minor changes, references adde
    corecore